πŸ•ΈοΈ
Deep Learning
  • πŸ’«Deep Learning Notes
  • πŸ’ΌPractical Tools
  • πŸ’ŽConcepts of Neural Networks
    • 🌱Introduction
    • πŸ”ŽThe Problem in General
    • πŸ‘·β€β™€οΈ Implementation Notes
    • πŸ“šCommon Concepts
    • πŸ’₯Activation Functions
    • 🎈Practical Aspects
    • πŸ‘©β€πŸ”§ NN Regularization
    • ✨Optimization Algorithms
    • 🎨Softmax Regression
    • πŸƒβ€β™€οΈ Introduction to Tensorflow
    • πŸ‘©β€πŸ’» Python Code Snippets
  • πŸ™‹β€β™€οΈ Hello World of Deep Learning with Neural Networks
    • 🌱Introduction
    • 🌐CNNs In Browser
  • πŸšͺIntroduction to Computer Vision
    • 🌱Introduction
  • 🚩Concepts of Convolutional Neural Networks
    • 🌱Introduction
    • πŸ“ŒCommon Concepts
    • 🌟Advanced Concepts
    • πŸ‘€Visualization
    • πŸ‘΅Classic Networks
    • ✨Other Approaches
    • πŸ•ΈοΈCommon Applications
  • πŸ‘©β€πŸ’» Works and Notes on CNNs
    • 🌱Introduction
  • πŸ’„Popular Strategies of Deep Learning
    • 🌱Introduction
    • πŸš™Transfer Learning
    • πŸ“šOther Strategies
  • 🀑Image Augmentation
    • 🌱Introduction
  • πŸ€Έβ€β™€οΈ Notes on Applied Machine Learning
    • 🌱Introduction
    • πŸ‘©β€πŸ”§ Notes on Structuring Machine Learning Projects
    • πŸ‘©β€πŸ« Implementation Guidelines
  • πŸ•΅οΈβ€β™€οΈ Basics of Object Detection
    • 🌱Introduction
    • β­•Region-Based CNNs
    • 🀳SSD and YOLO
    • πŸ€–TensorFlow Object Detection API
    • 🐞Model Debugging
  • ➰Sequence Models In Deep Learning
    • 🌱Introduction
    • πŸ“šGeneral Concepts
    • πŸ”„Recurrent Neural Networks
    • 🌌Vanishing Gradients with RNNs
    • 🌚Word Representation
    • πŸ’¬Mixed Info On NLP
  • πŸ’¬NLP
    • 🌱Introduction
  • πŸ’¬Applied NLP
    • πŸ™ŒπŸ» Handling texts
    • 🧩Regex
  • πŸ‘€Quick Visual Info
  • πŸ“šPDFs that I found and recommend
Powered by GitBook
On this page
  • πŸ”’ LeNet-5
  • πŸ‘€ Visualization of the network
  • πŸ™Œ Summary of the network
  • πŸ›Έ AlexNet
  • πŸ‘€ Visualization of the network
  • πŸ”Ž More Detailed
  • πŸ™Œ Summary of the network
  • 🌱 VGG-16
  • πŸ‘€ Visualization of the network
  • πŸ™Œ Summary of the network
  • πŸ”Ž More Detailed
  • 😐 Drawbacks
  • πŸ‘©β€πŸ”§ Implementation
  • 🧐 Read More

Was this helpful?

Export as PDF
  1. Concepts of Convolutional Neural Networks

Classic Networks

PreviousVisualizationNextOther Approaches

Last updated 4 years ago

Was this helpful?

Network

First Usage

LeNet-5

Hand written digit classification

AlexNet

ImageNet Dataset

VGG-16

ImageNet Dataset

πŸ”’ LeNet-5

LeNet-5 is a very simple network - By modern standards -. It only has 7 layers;

  • among which there are 3 convolutional layers (C1, C3 and C5)

  • 2 sub-sampling (pooling) layers (S2 and S4)

  • 1 fully connected layer (F6)

  • Output layer

πŸ‘€ Visualization of the network

πŸ™Œ Summary of the network

πŸ›Έ AlexNet

  • Too similar to LeNet-5

  • It has more filters per layer

  • It uses ReLU instead of tanh

  • SGD with momentum

  • Uses dropout instead of regularaization

πŸ‘€ Visualization of the network

πŸ”Ž More Detailed

πŸ™Œ Summary of the network

🌱 VGG-16

πŸ‘€ Visualization of the network

πŸ™Œ Summary of the network

πŸ”Ž More Detailed

😐 Drawbacks

  • It is painfully slow to train (It has 138 million parameters πŸ™„)

πŸ‘©β€πŸ”§ Implementation

🧐 Read More

🚩
πŸ‘΅
Implementation of AlexNet
Detailed LeNet-5
Detailed AlexNet
Detailed VGG-16
Summary of classic networks